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The effect of diffusing defects such as vacancies, displacements, torsions, and rotational
isomers on the nmr and dielectric relaxation behaviour is treated under various aspects. The
influences of the dimensionality of the diffusion process, of the mutual hindrance, of the defect
concentration, of the defect length and of the mean lifetime are derived and discussed.

1. Introduetion

Defect diffusion has proven to be a good tool in
many cases to solve the problem arising when
molecular motions are not describable by expo-
nential correlation functions i.e. as Poisson proc-
esses. Thus a series of models and applications can
be found in literature [1—6] concerning continuous
or step-wise diffusion mechanism with and without
restriction.

On the other hand there is the possibility to use
distributions of correlation times in order to
describe the deviations from exponential correlation
functions found with the majority of disordered
and amorphous substances. It should be stressed
that such formal distributions are only justified in
heterogeneous samples where we have a real
distribution of differently relaxing components. For
homogeneous materials there is no alternative way
than to consider a single correlation function
derived from the special type of molecular motion.
An experimental distinction between both situations
is possible in mmr relaxation provided that no
rapid material exchange or spin diffusion occurs as
for instance in solids with a diluted species of
observable nuclei. In this case any heterogeneity is
revealed by nonexponential relaxation curves.

In the following we want to develop further the
defect diffusion models, previously given in litera-
ture, so that applications to practical cases in
physics of amorphous substances and related fields
become possible.

2. Definitions

Under the usual conditions the longitudinal nmr
relaxation rate is given for a homogeneous sample
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The sum, which will be omitted below, runs over all
interacting pairs a reference nucleus participates.
The intensity functions I®(wy) are the Fourier
transforms of the unnormalized autocorrelation
functions G (7) of the dipolar interaction functions
FO. In the following we shall use the normalized
correlation function in the form
G (1) — GO (o0)
GW(0) — GW (o)
(FW(0) FD (1)) — [(F0)|2
T (PO —[KF0y]2

where [l = 1,2 and

F&ED = =3 cos O sin 6 exp (£ ¢);

F&2) = r-35in2 fexp(+12¢).

Gn(T) =

r, ¢, 0 are the spherical co-ordinates of the spin-
spin-vector. Notice that G () is no more dependent
on the type of the dipolar interaction functions £ ®.
The normalized intensity function I,(w) is then
given by the Fourier transform of Gy(7).
GW(0) — GO (o0) will be abbreviated below by a®.

For diluted electric dipoles Eq. (2) represents also
the correlation function of the dipole orientation
with respect to the electric field strength. In the
following we shall use the expression for the
complex dielectric constant & derived by Glarum
[7, 8], though the discussion about the relation
between microscopic and macroscopic correlation
properties is still going on [9]. All solutions of the
problem base, however, on the molecular correlation
function, so that the final evaluation formula can
be derived from it.

* All symbols have the usual meaning if not stated
otherwise, but have to be taken in SI-units.
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Fig. 1. Schematic representation of the
types of fluctuation connected with the
different models. The fluctuation at a

reference position within the system is

HOR | | |

assumed to be described by a function

f(¢). The time dependence of this function

] l is caused by defects diffusing across the
reference position.

(a) Defects with restoring capability: The

l reference position is passed by defects

which leave the initial state after

i passage. The distortion amplitude can

be stochastic or — in the simplest

case — constant. Both the arrival and

b) i

] t the departure of a defect are relevant.
Distortion pulses of varying lengths

! | |

are relevant. Distortion pulses of

l varying lengths are the consequence.

(b) Defects without restoring capability:

I I Merely the arrival of a defect is

relevant. The state, abruptly changed

by the defect in an uncorrelated

manner, is kept constant until the

next arrival of a defect. Thus the

: extension of the defect has no
influence.

(c) Defects without restoring capability

c) |

Identifying G (7) with the normalized correlation
function of the dipole orientation,
, I'(r) — I'(e0)

=0~ o) .
with

I'(1) = {cos () cos 6(0))
(0 is the angle between the electric dipole moment
and the local electric field strength), Glarum’s
formula can be written as

s} — slos] dG, (1)
£(0) — e(c0) 3){ de }
=1+ iwL{G.(1)}, (4)

% indicates the Laplace transform with respect to
the variable s= —i®w. The simple form of Eq. (4)
holds for samples with negligible local field effect,
i.e. especially for diluted polar substances. Other-
wise Eq. (4) has to be modified slightly [7, 8].

causing smoothly increasing distor-
tions: The fluctuating function f(t) is
smoothly changed during the passage
l of a defect rather than abruptly. Thus

the width of the defects has a certain
degree of influence.

3. Basic Models, Correlation Functions
and Probabilities

In the following we shall distinguish on the one
hand defects which restore the initial state after
having passed the reference position and, on the
other hand, defects which leave a state uncorrelated
to the initial state. In the second case only the next
arrival of a defect provides a further change of the
state.

The first model is appropriate for ordered
materials with local defects so that the state at a
reference positicn is determined either by a defect
or — in the absence of a defect — by the ordered
environment. The simplest case is a two-state model
defining only one defect state (Figure 1a). This
model will be used for convenience. In a certain
sense we have here to deal with a pulse model as
described in Reference [10]. In that paper it has
been shown that the stochastic variation of the
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pulse amplitude does not influence the intensity
spectrum. Therefore the treatment of the present
model with two states should not cause any loss
of generality.

The second model should be applicable to
materials with a weak influence of the environ-
mental structure. Then only the arrival of a
defect is relevant. It will cause (and leave) a state
uncorrelated to the initial situation as schematically
shown in Fig. 1b and c.

The calculation of @, according to Eq. (2) or (3)
requires a series of averages. For this purpose we
define the following probabilities *.

p (i) = a priori probability to find the state
no. 1;

P.(i, j, T) = conditional probability that the state j
will be present after a time 7 if the
system was initially in a state 1.

Then the probability that we have initially a state
and that a state j is found after the period 7 is given
by
P(i,0]j,7) = p(i) Pe(i, ], 7). (5)
Normalization requires for the two-state model
P.(1,1,7)=1— P,(1,2,7),
P.2,2,1)=1—P;2,1,7), (6)
r(1)=1—p(2).
The continuity of defect flow is fulfilled if
P(i,0]j,7) = P(j,0]i,7) (i=j). (M)

In terms of these definitions, Eq. (2) or (3) yield
generally by expressing the averages as weighted
sums
P(i,0]i,7) — P(i,0]¢, o)

Gul(r) = P(i,0[i,0) — P(i, 0|, o)

(8a)

where ¢ stands for the initial state.

As P(i,0]i, 00)=[p(i)]2 and P(i,0]i, 0)=p(i)
Eq. (8a) can be rewritten in the form
Pe(i,1,7) — p(2)

1 —p() '
Alternatively, we can express G, (t) by the prob-
ability that any change occurs during 7, leading for
the two-state model to

Gn(7) =

(8b)

* Probabilities refering to the reference particle are
designated by the letter p, those refering to defects by the
letter q.
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with
P(i,0]j,7) =p(1) Pe(1,2, 1)
=p(2) P:(2,1, 1)

and

P(i,0[j,00) =p(1)p(2) (i 7).

The second type of ansatz assumes that the first
arrival of a defect suffices to destroy completely the
correlation to the initial state. We define with P(t)
the probability that at least one defect has reached
at least once the reference molecule within 7. If
P (o0) =1 we obtain for the normalized correlation
function

Gu(t) =1 — P(v) = P(i,0]s,7) (10)

i.e. the probability that no change has occurred.
For this type of ansatz a treatment with ,,absorb-
ing walls” is appropriate [1, 2, 6].

In the following we will distinguish diffusion
models according to the dimensionality and the
limitation to a restricted area. In contrast to
previous studies [3, 4] we will assume continuous
diffusion models.

4. One-Dimensional, Unlimited Defect Diffusion

4.1. Correlation Function for the Two-state Model

We assume defects having an infinite lifetime
and being able to penetrate each other without any
hindrance. We designate the unperturbed state
by ,,1” and the defect state by ,.2”. If p; is the
number of defects per unit length and & is the
length of a defect, then the a priori probability to
meet no defect between —b/2 <z <b/2, i.e. that
the reference particle at the origin is unperturbed,
is given by

p(l) =e"ab, (11)

The probability that the final state is the same
as initially, i.e. the probability that none of the
defects in the system influences the reference
particle after an interval 7 is then

Pel,1,7) = <H (1 — Pcl(lr 2,7)]).
l

P (1,2, 1)is the probability the {th defect influences
the reference particle at time 7. The average
concerns all possible initial arrangements of the



R. Kimmich and G. Voigt -

defects. As the defects are assumed to move
independently we may write

Pe(1,1,7) =] [[1 —<P1,2,7))]
!
= lim [1 - <Pcl(1925 T)>]n '

n—oo

(12)

The limes takes into account the infinity of the
system. The average ( P/ (1, 2, 7)) is of course the
same for all defects and can be calculated by taking
into account all initial positions of a defect outside
of —b/2 <2 <5/2:

2
(Pd(1,2, 7)) = =

S (13)

lp is the mean nearest defect distance, nly the total
length of the system. da’/nly is consequently the
probability that a specific defect lies initially
between z’ and 2’ + dx’. ¢1 (2, 7) is the probability
that the defect diffuses from this initial position to
the reference region —b/2 <x <b/2.

By the use of the solution of the one-dimensional
diffusion equation we obtain

b 2
exp{— 70—[1 —f—‘/n; (1 —exp{—
Gn(t) =
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z'+b/2 1
2 0= | 377D+
X exp(— x''2/4D 7)dz"", (14)

where D is the diffusion coefficient of the defects.
Combining Eq. (13) and (14) yields

2 oo
l —_ — 4 ’
(P, 2, 0 = b/f2q1(x,1)dx

1 = '+ b2 ' — b2
~sio | (im0 )~ o )|
1 £+0/2 z
= lim [ f erf( )da‘;
§—b/2 (
= Jlayme)

(15)
where we have used the error function defined by

erf(z = f
0

—dt.

The integral of thls function is [11]
e—a’zz

ferf(a z)dx = zerf (ax) + — -+ const.
aln

Thus it follows from Eq. (8b), (12

Ty ?b
5t

) and (15)

(16a)

with 75 = 62/2D and p (1) = exp(— b/lp).

In the limit b <[y i.e. for low defect concentrations, we may write in linear approximation

o TN
Gn(7) :erf( ‘/g—:)— ‘/n; (1 — exP{_

Tb

2—1}) (16b)

The condition b < [y is rather uncritical as can be shown by a numerical test. It is remarkable that this
limiting expression doesn’t depend any more on the defect density. Merely the unnormalized correlation
function, i.e. the absolute values of the relaxation sizes, are shifted by the defect density.

This behaviour corresponds to that found by Noack et al. [10] for a random pulse model by use of

Campbell’s

theorem. As illustrated in Fig. 1a, we have here a similar situation apart from the fact that

all time dependences are diffusion controled. Campbell’s theorem states that the spectrum of a Poisson-
like pulse sequence is dominated by the spectrum of the individual pulse shape rather than by the

mean pulse rate. In the defect-diffusion model the

tion, so that a complete analogy exists.

4.2. Nuclear Magnetic Relaxation

..pulse-rate”

is determined by the defect concentra-

The Fourier transform of Eq. (16b) yields the normalized intensity function

Iy(w) =1p7120078/2(1 —

e~ V% [cos ) o Tp + sin )/ w Tp))

(17)
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with 7, =052/2D. For the longitudinal relaxation
rate we make use of the fact that even for aniso-
tropic motions [3] the following relation is fre-
quently valid

(PO — [F)|?

N4 FO2) — [KFOY[2) (18)
=40W(0)
so that for a two-spin 1/2 ensemble
1 9 Mo 2
= —ap2[ ) g
+41,2w)]. (19)

aM (p1) is the mean square deviation of F1). The
dependence on the defect concentration enters
merely by this quantity. For 96 <1 it holds
c®(g1) ~ o1.

For @ 75 € 1 we find the limit

1Ty ~ 1o/ (20a)
while for o 7, > 1
1T ~ 7y 12 w32, (20b)

Thus we have obtained analogous limits as Hunt
and Powles [2] for the nearest neighbour approxi-
mation. The w—3/2-slope of Eq.(20b) is related
with the continuous diffusion assumed above. For
stepwise defect diffusion one would expect a final
w~2-slope [3]. A T'1-minimum occurs for w7y~ 1.4.
Notice that 7, is the mean diffusion time for a mean
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square displacement 2. Figure 2 and 3 show plots
of the behaviour of Equation (19).

4.3. Dielectric Relaxation

We combine Eq. (16b) with Equation (4). For
this purpose we use the Laplace transform [12]

g{Gn(T)}
_L 1 — e V% (cos |/ Tp — sin [/ 1p)
o 2)/w 1 -
L 1 — e V9% (cos /]/_w?, -+ sin ]/w_r;) (1)
2]/60 Ty
leading finally to
Ve(w) — &(o0)
€(0) — &(o0)
1 _ 1+
—_ | p—VoTogj b s =
=Von [e sin)/w 7y + 3 (22)
X (1 — e~ 7™ {cos /o 1p + sin o 75})| .

The limiting behaviour of this formula at low and
high frequencies is plotted in Figures 2 and 3.

4.4. Total Correlation Loss

We turn now to the second type of ansatz as
illustrated in Figure 1 b. The arrival of a defect shall
cause a sudden change leaving a state uncorrelated
to the initial one. On this basis Bordewijk [6] has

E(w)-€(W)|cTyf eIy hio ey R
€(0)-g(m)| s1| 1075 /
real and imaginary /
part, respectively £(w)-e(o) 5
10 10tl—__ __EOre® /
e /
~_ .
ws
N
104 109
£"(w) ¥
17" £(0)- e(@) /
6 -
104 108 .
-
k;vzmwz R ' T1 (w)
. / ’
-
T T T T T -
105 106 107 108 109 w/rads™!

Fig. 2. Frequency dependence of nmr and dielectric relaxation quantities for unlimited one-dimensional diffusion of

defects with restoring capability.
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S(Tb) - e(w) cTq
€(0)-g(a)| s

real and imaginary
part. respectively

9 ap2gin(He)?
c:zv'hio G

w:107rad s’

-2, ,1/2
R

w0y  10Y

103 104

g'(r,) -e(o)
100__ 1 09_ ______ €(0) - €(®)
__\‘\\
.(T ) - —

~1/2

>
R NG

T T
109 10-8

T
1077

T
10-6 1075 T /s

Fig. 3. NMR and dielectric relaxation quantities in dependence on v, for unlimited one-dimensional diffusion of defects

with restoring capability.

derived an expression compatible with the empirical

formula of Williams and Watts [13]
Gn (1) = exp[— (7/7)1/2] (23)

with 7;= m1p2(16 D)~1. The intensity function is
then

on 1
I,(w) :‘/1—7 T {cos (a

+ sin («) [$ — Sa(2)]}

) [} — C2(a) (24)

with a=(4wt;)"1. C2 and Sg are the Fresnel-

integrals
7
1 cos t
Ca(x) = ——
2() 2n S ’

0
7
C smt

Sa(

{___--'

which are tabulated for instance in Reference [14].
The limiting behaviour for

I, ~ 712 =3/2,

oT>1 is
The dielectric relaxation behaviour is discussed in
Reference [13].

The abrupt loss of the correlation at the arrival
might be somewhat unrealistic. We want therefore
to add a short discussion of defects causing a
smoothly increasing distortion (Figure 1c).

We consider a reference particle at z=0. When
this position is reached, the total correlation to the
initial state is assumed to be lost. As we don’t know
the details of this distance dependent distortion, we
simply use the rate of the first arrival of the defect
at a position x averaged over —b/2 <z < +b/2.

An alternative interpretation of this picture
would be the assumption that a reference particle
at =0 can suddenly lose the correlation to the
initial state at any position of the defect within
—b/2=<2x=b/2. An example could be a vacancy
which gives an atom the chance to jump in it over
a certain range of distance.

The probability that a defect passes a distance
|z’ — x| between 7 and 7+ dt for the first time is
[15]

2 |z — 2’|
Q1 (@2, 7)dr = 2(n D)1/2 32
-exp(— (x — 2')2/4D 7)dr

where 2’ is the position of the ,,absorbing wall”’ and
z is the initial co-ordinate of the defect. The
average over the positions of the ,,absorbing walls”
yields

) 1 b/2
02, 7) = 2b (7 D)1/ 73/2 _{/J” — |
cexp(— (x — z')2/4D ) dx’ (25)
D12

:W[exp ]x]——b/2 2/4D‘L’)

—exp(— (|z| + b/2)2/4D 7)].
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The average over all initial positions z of the
defect —a/2 <z < —b/2 and b/2 <z <a/2 leads to

i 2D a—b a-t+b
q1 (1) = b erf(éi[/D‘r#) — erf(ZT/D—TE)

1 f b
Rl (2 1/’D?)j

where a is the length of the total system. As a > b
we may write

(26)

" 2D : b -

1 ="y \2yDr ol
so that

t il f b d

0= fort{ )

or by substitution
b 4Dyb?
S -1/2
7 (t) 4wojerf(u ) du .

The probability that none of n defects has touched
the reference region is then

(L—aq@®]".

Recognizing that a=mnly and that n is a large
number, leads to

1 b 4D n
G (t) :7llir11° [1 Y. d[ erf (u=1/2) du}
b 4Dyp?
= exp {— 4l J erf (u=1/2) du} ;
For t <2/4D we can use the approximation
b 4Dip?
Gu(t) =1— e Oj erf (u-1/2) du . (28)

The intensity function can then directly be derived
from Eq. (28) by the aid of the Laplace-transform

b2s
w5
Lonth =5 ——— @)
with s = —iw. The intensity function is then
I,(w) =2Re{ZL{Gn(t)}} (30)

2D 1 3 b2 w 2w
T bl 2| TP\TV 2D COSVzD '

For b < |/2D/w we derive from Eq. (30) the limit
for w 7; > 1 of Eq. (24) as it must be.

R. Kimmich and G. Voigt - Defect Diffusion Models in NMR and Dielectric Relaxation

5. Three-Dimensional, Unlimited Defect Diffusion

5.1. Correlation Function

In the three-dimensional case Eq. (13) has to be
modified in a way that the integral covers the whole
space except a small sphere of radius @/2 around
the reference point. The defects are now considered
to be extended over a sphere of diameter a.

The average probability that the Ith defect
influences the reference particle after a period 7 is
then quite analogous to Eq. (13)

1
(Pd(1,2,7)) = - T'Jalgq;;(r,, 7)d3’. (31)
Vo is the mean free volume per defect, nVy the
sample volume, g3(7’, 7) is the probability that a
defect, initially in a distance ' is finally near the
reference point within a sphere of radius a/2.
According to Ref. [15] it holds

1
4 o —7""2[4 Dt 33,/
q3(r',T) = (An Do) e dsr’ .

)

:,,
r’+ajz

Ny

(32)

o lA

The integration concerns all final positions of the
defect affecting the reference position.

So far we have assumed that the perturbation
can occur with spherical symmetry around the
defect position. The reference point would thus be
influenced by all defects located within a sphere of
radius /2 [Eq. (32)]. This leads however to a rather
complicated form of the integral in Equation (32).
The problem can be avoided by the use of a con-
siderably simplifying approximation, which fortu-
nately leads to no severe alteration of the final
result.

The integration in Eq. (32) can be performed by
integrating over all curved infinitesimally thin
slices described by the perturbation volume around
the reference position and, on the other hand, by
the spherical shell of thickness dr”” with a radius »”’
around the initial defect position (Figure 4). For a
spherical shape of the perturbation region the
volume element thus would be

r" | a2
A3 =7 —- [»Z — (= r")z} dr’” . (33)
Instead of this we approximate for simplicity the
perturbation volume by a virtually conical shape

(Fig. 4), so that the same volume results. The
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reference
point

volume element
(curved slice
with radius r") initial
position
Fig. 4. Illustration of the approximative volume element
used in Section 5.1. The reference point in the center of
the indicated volumes (7’) is influenced by all defects
entering these volumes (/). The volume elements both
for the spherical and for the conical shape have to be
considered as curved slices of thickness d»”” and with a
radius of curvature r”.

volume element is now

"

T

r
asr’ = a2 dr" . (34)
6 r

n
B a? can be considered as the mean perturbation

cross section of the defects. A numerical control of
this approximation is given below.
Equation (32) then becomes

a2 " +al2 _
————— rl'e—r" Tdr’
48 71/2(D 1)3/2¢" ,r_f,,,z

a? ( (r" — a/2)?
T 2u@bozr |“P\T  4De

( (r’—{—a/2)2>]
—exp| — - .

Together with Eq. (31) we derive

g3 (7’7 T) =

4D 1 (9]

. 4n i
(PH1,2,7)y =lim——— [ r'2q3(r’,7)dr

& —>00 0a/2+e
_ L [aeVaDreuny
n V() 3

7 ad a

+ *‘6:"‘[ 1= %erf (W>

1 . : e
T e VaD< ||

Inserting Eq. (36) in Eq. (12) and (8b) yields

(36)

1301

for >0 and G,(0)=1. V=ma3/6 is the volume
of a defect; Vo=p3 1 is the volume per defect;
p(1)=exp{—V/Vo}; ta=a2/6D. As V>V, we
may use the linear approximation

1 314 27
%W—EMVQI“VEE
1 31’(1 ]
— exp _ 21

for 7>0 and G,(0)=1.

(37b)

The condition V > ¥V, is again rather uncritical.
The deviations numerically found between Eq. (37a)
and Eq. (37b) are even for V=2 V only about 20%,.
This function has a similar form as in the one-
dimensional case [Eq. (16)]. The discontinuity at
7=0 is due to the approximation Equation (34).
The numerical integration leads to a correlation
function with a smooth initial part while the final
decay becomes more and more identical to the
approximated function. Figure 5 shows that the
effect of this discontinuity on the relaxation
behaviour is a small shift of the curves which can
easily be corrected. It is again remarkable that the
normalized correlation function doesn’t depend on
the defect concentration, which merely influences
the absolute value of the relaxation rates but not
the frequency or temperature dependence.

5.2. Nuclear Magnetic Relaxation

Together with the Fourier transform of Eq. (37b)
we obtain

—1——3 o i 4 2 5(1)
T: 8 (47,) yih2 oW [In(w) + 4 In(2 )]
with
I, (w) = (37a) V2w 3/2[1 — exp(— V320?a)
X (cos 1/'3?0—1;
+sin /3o {l + /3w wa})].

(38a)

The discussion of the one-dimensional case (Sec-
tion 4.2) can be transferred to Eq. (38a) which
shows the same qualitative behaviour except for
the limit w1, <1, for which the frequency depen-

V ' —2—‘;77 3Ta, 1 3Tll
exp{—- Vo[l -+ ‘/3;?;(1 - exp{— 21}) — Eerf‘/ o J} —p(1)
Gn(T): - S r RS |7 [S— .

1—p(1)

(37a)
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Fig. 5. Frequency dependence of nmr and dielectric relaxation quantities for unlimited three-dimensional diffusion of
defects with restoring capability. The points have been calculated numerically by the use of the correct volume element
Equation (33). The lines represent the approximative results obtained from Eq. (38a) and (39a), respectively, which
have been corrected by the substitution of w by 0.6  as indicated by the arrow [Eq. (38b) and (39b), respectively]. The
correction symbol has been omitted for simplicity. The deviations are less than the experimental errors usually found.

dence vanishes. All remarkable features are given
in Fig. 5 and 6. The numerical integration using the
exact volume element Eq. (33) leads to merely
shifted curves. Thus a correction of Eq. (38a)
is possible by the substition of w by 0.6 w:

5.3. Dielectric Relaxation

The stepwise initial decay of the correlation
function Eq. (37b) makes again no physical sense
because it is a consequence of the approximation
Equation (34). Thus we use only the smoothly
decaying part of the correlation function, which has

IP™ () = 1, (0.6w) . (38b)
€(1a)-E(0) cTy c: 9y hot)(He)?
€(0)-€(®)| — e 4n
(@) s-1 w:1.67-107 rad s-!
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part. respectively
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Fig. 6. NMR and dielectric relaxation quantities in dependence on 7, for unlimited three-dimensional diffusion of defects
with restorig capability. The correction formulae (38b) and (39b), respectively, have been applied omitting the cor-

rection symbol.
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to be renormalized according to the requirements of
Equation (4). It follows

&g(w) — &(o0) _ 1

e(0) —e(0) 3w,
X {cos /3w 74 (1 + J/3w 1a) — sin /3w 74}
+i(1 —exp(— }/3w 1a) {cos }/3w 74
+ sin /3w 74 (1 + /3w 1a)})] .

[1 —exp(— }/3w 7a)

(39a)

The numerical test proves again that this result
represents the actual behaviour of the mcdel with
satisfying accuracy, especially if the curves are
shifted according to the correction formula

Eeor (@) = £(0.6 ) . (39b)

6. Limited Defect Diffusion

6.1. The Problem

So far we have considered non-interacting defects
which diffuse independently from each other. In
cases where this assumption is not justified we have
to deal with a ,,many-particle problem”. Especially
in the one-dimensional case and, for high defect
densities, in three dimensions we can no more
neglect ,,collisions” between defects. An altered
diffusion behaviour is the consequence.

It is clear that an exact analytical treatment can
not be envisaged. There are however two ways to
overcome the difficulties:

(i) The time development of the system can be
simulated with the aid of a Monte-Carlo calculation.
Previously we have chosen this way for the deriva-
tion of the correlation function in molten polymers,
assuming a one-dimensional system [16]. An
extension to three dimensions is principally possible,
though it may be a problem of the available com-
puter time.

(ii) It can be tried to simplify the system in such
a way that an analytical treatment becomes possible
and that the essential features of the processes are
still included. Thus we have previously treated the
one-dimensional diffusion of a single defect between
reflecting walls, which might represent the neigh-
bouring defects or barriers arising from the structure
of the system [4, 5].
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The second method has certainly the advantage
of yielding analytical expressions, though it is
restricted to the one-dimensional case. In three
dimensions the effect of defect collisions is, however,
less severe. There are no ,,reflexions’ in the sense
mentioned above. We expect essentially a reduction
of the effective diffusion constant while the time
dependence of the diffusion process is qualitatively
the same as in the case without interaction between
the defects. Therefore we will only discuss diffusion
in one dimension according to the treatment given
in Reference [5].

reflecting barriers

™

|
|
l
-
d

xy

|
: b
. B
? i
Xq

Fig. 7. Schematic representation of the problem to be
dealt with in the case of limited defect diffusion.

We consider a model situation as represented in
Figure 7. The probability that the interaction state
is changed after a period 7 is given by

1 d-b2 r

(3]

. . +b/
P(i,0]j,7) = fbl

o

d(d—Db) 42 mzr+b2 r
T =r—>b/2

& Pc(xi, xf, T) dxfdxi dr

(40)

with the probability that the defect diffuses from
x; to zy in the time interval =

Po(w, o m)dep = S5 [g@nd — (x4 — 27),7)

n=—o0

+q@2nd — (x; + %), 7)] dzy

[¢(z, T) is given by the integrand of Equation (14)].
The sum comprises all diffusion pathways produced
by the ,,method of images” [17]. Equation (40)
includes the averages over all final positions of the
defect except those near the reference point,
all initial positions in the range

r—b2=x;<r+b2,

(41)

and, finally, over all positions of the reference point.
Exactly spoken the latter average should be
performed afterwards with the whole relaxation
rates according to the assumption of rapid spin dif-
fusion in the nmr case. Thus we have in principle to
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deal with different ensembles for each value of r.
Formally this average can however be performed
at this stage.

The required relaxation sizes have been calculated
in Reference [5]. The results can be expressed either
in rather lengthy real expressions or in short
complex formulae. Both representations require a
computer evaluation in order to plot the analytical
behaviour. In the following we’ll discuss some
approximative expressions. This will be performed
by defining two characteristic time constants,
namely t4=d?/2D and t1y=052/2D. The exact
formulae can be found in Reference [5].
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Fig. 8. NMR and dielectric relaxation quantities in dependence on 7, for limited one-dimensional defect diffusion where

we have assumed 74 = 102 1.
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Fig. 9. Frequency dependence of nmr and dielectric relaxation quantities for limited one-dimensional defect diffusion.
Notice that the ratio 74: 75 = 102 is too small to show fully the intermediate behaviour given in Equation (43) and (46).

Figure 9 shows a plot of the whole frequency
dependence.

7. Diseussion

In this paper we have reviewed defect diffusion
models basing on different assumptions. The most
elementary distinction concerns the type of the
diffusion processes. We have here assumed that the
defects diffuse continuously, though the thermal
activation suggests a stepwise character. Denoting
the mean step time by 75, we can consider the
present calculation to be valid in any case for
o715 < 1. Previously the possibly stepwise diffusion
could be taken into account in some special models
[3, 4]. From these investigations we conclude that
the only consequence of the stepwise character
would arise in the limit wts> 1 for which the
proportionality 7'; ~ w2 has been calculated.

Secondly we have distinguished certain degrees
of restrictions of the defect diffusion, caused by the
interaction between defects. In the three-dimen-
sional case, our argument was, that no principally
different behaviour — except an alteration of the
effective diffusion constant — should be expected.
In the one-dimensional case, however, the limitation
of the diffusion paths severely influences the
relaxation for w1y €1, while the limit wTp> 1 is
unaffected. The decision, which degree of mutual
hindrance of the defects has to be assumed, depends

on the type of the considered defect. Extended
torsions in polymer chains, for instance, are expected
to penetrate each other without essential hindrance.
The same holds for diffusing vacancies in any kind
of material. A stronger hindrance is expected for
dislocations in solids and localized defects in
polymer chains. The energetics of these defects
suggest more or less a hard-core behaviour.

The type of the defects and of the material
defines also the dimensionality of the diffusion
process. The decision of the dimensionality is quite
important for the relaxation behaviour in the limit
wte <1 or wtp<1, respectively, while in the
opposite limits the behaviour is identical.

An important question is the dependence on the
defect concentration. It is an essential statement of
this study that unlimited diffusion can lead to
normalized correlation functions independent on
the defect concentration as discussed in Section 4.1.
A concentration dependence appears, on the other
hand, for Bordewijk’s model and for the restricted
diffusion case via 74.

Comparing the diverse defect diffusion models
presented in literature, one should be aware of the
following. In previous calculations the nearest
neighbour approximation has been used [1—3]. Ta-
king into account only the nearest neighbours is
however somewhat inconsistent with the assump-
tion of unrestricted diffusion as outlined in Section
6. If no mutual hindrance of the defects is assumed,
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the treatment should include in any case all defects
in the system ]6].

Finally we want to discuss the assumption of an
infinite lifetime of the defects or a lifetime long
compared with the relevant diffusion times, a quite
essential feature of the whole formalism. What
would happen if annihilation and creation of defects
would be allowed at any place within the sample
with the same probability and in a time scale
shorter than the relevant diffusion times 7,?
Clearly, the resulting behaviour approaches that of
a Poisson process, i.e. an exponential correlation
function analogous to that derived in Sect. 3.1 of
Reference [3]. For mean lifetimes 79> 1, the
formalism presented above is appropriate. In the
intermediate range and for finite systems, there
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remains the possibility to apply the matrix method
described in Reference [4].

Applications of the models given above are
possible for all kinds of more or less disordered
systems. Thus a first discussion of defect diffusion
in amorphous polyethylene is given in Reference
[18]. The diffusion of vacancies in crystalline
materials on the other hand can be treated by
refering directly to the symmetry properties as
demonstrated in Ref. [19, 20] and in subsequent
papers.
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