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The effect of diffusing defects such as vacancies, displacements, torsions, and rotational 
isomers on the n m r  and dielectric relaxation behaviour is treated under various aspects. The 
influences of the dimensionality of the diffusion process, of the mutual hindrance, of the defect 
concentration, of the defect length and of the mean lifetime are derived and discussed.

1. Introduction

Defect diffusion has proven to be a good tool in 
many cases to solve the problem arising when 
molecular motions are not describable by expo­
nential correlation functions i.e. as Poisson proc­
esses. Thus a series of models and applications can 
be found in literature [1  — 6 ] concerning continuous 
or step-wise diffusion mechanism with and without 
restriction.

On the other hand there is the possibility to use 
distributions of correlation times in order to 
describe the deviations from exponential correlation 
functions found with the majority of disordered 
and amorphous substances. It should be stressed 
that such formal distributions are only justified in 
heterogeneous samples where we have a real 
distribution of differently relaxing components. For 
homogeneous materials there is no alternative way 
than to consider a single correlation function 
derived from the special type of molecular motion. 
An experimental distinction between both situations 
is possible in n m r  relaxation provided that no 
rapid material exchange or spin diffusion occurs as 
for instance in solids with a diluted species of 
observable nuclei. In this case any heterogeneity is 
revealed by nonexponential relaxation curves.

In the following we want to develop further the 
defect diffusion models, previously given in litera­
ture, so that applications to practical cases in 
physics of amorphous substances and related fields 
become possible.

2. Definitions

Under the usual conditions the longitudinal n m r  
relaxation rate is given for a homogeneous sample

Reprint requests to Prof. Dr. R. Kimmich, Kernresonanz­
spektroskopie, Universität Ulm, Postfach 4066, D-7900 
Ulm.

with spins 1 / 2  by*
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The sum, which will be omitted below, runs over all 
interacting pairs a reference nucleus participates. 
The intensity functions 7 < 0 ( c o l ) are the Fourier 
transforms of the unnormalized autocorrelation 
functions £?<*) (r) of the dipolar interaction functions 
FW.  In the following we shall use the normalized 
correlation function in the form

QW  ( t)  — G W  (oo)
Gw(t) =  0 (0 (0 )  -G < l) (o o )

< ^ ( 0 )^ < -*> (T )> -|< i™ > | 2

<|^(*)|2> -  |<iT(«))|2 1 >

where I =  1 , 2  and
F  =  r ~ 3 cos 6 sin 6 exp ( +  i (p) ;
F  =  r- 3  sin2 6 exp (+  i 2 <p) .

r, (p, 6 are the spherical co-ordinates of the spin- 
spin-vector. Notice that Gn (r) is no more dependent 
on the type of the dipolar interaction functions F<lK 
The normalized intensity function / M(co) is then 
given by the Fourier transform of Gn( r). 
GW (0 ) — G«) (oo) will be abbreviated below by 

For diluted electric dipoles Eq. (2) represents also 
the correlation function of the dipole orientation 
with respect to the electric field strength. In the 
following we shall use the expression for the 
complex dielectric constant e derived by Glarum 
[7, 8 ], though the discussion about the relation 
between microscopic and macroscopic correlation 
properties is still going on [9]. All solutions of the 
problem base, however, on the molecular correlation 
function, so that the final evaluation formula can 
be derived from it.

* All symbols have the usual meaning if not stated 
otherwise, but have to be taken in SI-units.
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a)

b)

c)

Fig. 1. Schematic representation of the 
types of fluctuation connected with the 
different models. The fluctuation a t a 
reference position within the system is 
assumed to be described by a function 
f(t). The time dependence of this function 
is caused by defects diffusing across the 
reference position.
(a) Defects with restoring capability: The 

reference position is passed by defects 
which leave the initial state after 
passage. The distortion amplitude can 
be stochastic or — in the simplest 
case — constant. Both the arrival and 
the departure of a defect are relevant. 
Distortion pulses of varying lengths 
are relevant. Distortion pulses of 
varying lengths are the consequence.

(b) Defects without restoring capability: 
Merely the arrival of a defect is 
relevant. The state, abruptly changed 
by the defect in an uncorrelated 
manner, is kept constant until the 
next arrival of a defect. Thus the 
extension of the defect has no 
influence.

(c) Defects without restoring capability 
causing smoothly increasing distor­
tions: The fluctuating function /(<) is 
smoothly changed during the passage 
of a defect rather than abruptly. Thus 
the width of the defects has a certain 
degree of influence.

Identifying Gn (r) with the normalized correlation 
function of the dipole orientation,

T(r) — r (  oo)
Gn( r) =

n 0) -  r ( o o )
(3)

with
r (t) =  <cos 0  (r) cos 0  (0 ))

( 0  is the angle between the electric dipole moment 
and the local electric field strength), Glarum’s 
formula can be written as

e{(o) — e(oo) _  _  ^  f dGn(r)  
e(0) — e( oo) } d r

=  1 +  i co S^{Gn (x)} , (4)

3? indicates the Laplace transform with respect to 
the variable s =  — ia>. The simple form of Eq. (4) 
holds for samples with negligible local field effect, 
i.e. especially for diluted polar substances. Other­
wise Eq. (4) has to be modified slightly [7, 8 ].

3. Basic Models, Correlation Functions 
and Probabilities

In the following we shall distinguish on the one 
hand defects which restore the initial state after 
having passed the reference position and, on the 
other hand, defects which leave a state uncorrelated 
to the initial state. In the second case only the next 
arrival of a defect provides a further change of the 
state.

The first model is appropriate for ordered 
materials with local defects so that the state at a 
reference position is determined either by a defect 
or — in the absence of a defect — by the ordered 
environment. The simplest case is a two-state model 
defining only one defect state (Figure la ). This 
model will be used for convenience. In a certain 
sense we have here to deal with a pulse model as 
described in Reference [10]. In that paper it has 
been shown that the stochastic variation of the
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pulse amplitude does not influence the intensity 
spectrum. Therefore the treatment of the present 
model with two states should not cause any loss 
of generality.

The second model should be applicable to 
materials with a weak influence of the environ­
mental structure. Then only the arrival of a 
defect is relevant. It will cause (and leave) a state 
uncorrelated to the initial situation as schematically 
shown in Fig. 1 b and c.

The calculation of Gn according to Eq. (2) or (3) 
requires a series of averages. For this purpose we 
define the following probabilities*.

p  (i) =  a priori probability to find the state 
no. i ;

Pc{i ,  j > t) =  conditional probability that the state j  
will be present after a time r if the 
system was initially in a state i.

Then the probability that we have initially a state i 
and that a state j  is found after the period r is given
by

P( i ,  0 \ j ,  r) =  p {i )  P e{i , j ,  r ) . (5)

Normalization requires for the two-state model 

P c( l , l , r )  =  l - P c( l ,2 , t) ,
P c ( 2 , 2 , t )  =  1 - P c ( 2 , 1 , t ) ,  (6 )

2>(1) =  1 ~ P ( 2) •

The continuity of defect flow is fulfilled if

P { i , 0 \ j , r )  =  P ( j , 0 \ i ,  r) {i =)= j ) . (7)

In terms of these definitions, Eq. (2) or (3) yield 
generally by expressing the averages as weighted 
sums

n  / \ -  T) ~  K  °°) ,

n P( i ,  0 1 i, 0 ) — P(i ,  0 1 i, oo)

where i stands for the initial state.
As P[ i ,  0 1 i, oo) =  [p(i) ]2 and P( i ,  0 1 i, 0) = p { i )  

Eq. (8 a) can be rewritten in the form

P c(i , i ,  t) — p{ i )

Gn ( r) =  l -
P { i , 0 \j, t)
P( i ,  Ob', oo) (9)

G n (  r) =
1 — p(i )

(8 b)

with

and

P { i , 0 \ j ,  r) = p ( l )  P c{ 1, 2 , t)
=  p { 2) P c(2, 1, r)

P ( i , 0 \ j ,  oo) =  p ( l ) p { 2 )  (i 4= j) ■

Alternatively, we can express Gn (r) by the prob­
ability that any change occurs during r, leading for 
the two-state model to

* Probabilities refering to the reference particle are 
designated by the letter p, those refering to defects by the 
letter q.

The second type of ansatz assumes that the first 
arrival of a defect suffices to destroy completely the 
correlation to the initial state. We define with P (r )  
the probability that at least one defect has reached 
at least once the reference molecule within r. If 
P(oo) — 1 we obtain for the normalized correlation 
function

Gn ( t )  =  1 — P ( t )  =  P { i ,  0 1 i, r ) ( 10)

i.e. the probability that no change has occurred. 
For this type of ansatz a treatment with „absorb­
ing walls” is appropriate [1 , 2 , 6 ].

In the following we will distinguish diffusion 
models according to the dimensionality and the 
limitation to a restricted area. In contrast to 
previous studies [3, 4] we will assume continuous 
diffusion models.

4. One-Dimensional, Unlimited Defect Diffusion

4.1. Correlation Function for the Two-state Model

We assume defects having an infinite lifetime 
and being able to penetrate each other without any 
hindrance. We designate the unperturbed state 
by ,,1” and the defect state by ,,2”. If qi is the 
number of defects per unit length and b is the 
length of a defect, then the a priori probability to 
meet no defect between — b/2 f^b/2,  i.e. that 
the reference particle at the origin is unperturbed, 
is given by

p ( l )  =  e ~ e'b . (1 1 )

The probability that the final state is the same 
as initially, i.e. the probability that none of the 
defects in the system influences the reference 
particle after an interval r is then

p c( i , i .T )  =  < n [ i - ^ v ( i , 2 , T ) ] > .  
i

P cl { 1, 2 , r) is the probability the Ith defect influences 
the reference particle at time r. The average 
concerns all possible initial arrangements of the
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defects. As the defects are assumed to move 
independently we may write

p . ( i , i f T ) = r i [ i - < J v < i . * .  * » ]  i
=  lim [l - < P C*(1,2, r)>]> (12)

The limes takes into account the infinity of the 
system. The average <PCZ(1, 2, r)> is of course the 
same for all defects and can be calculated by taking 
into account all initial positions of a defect outside 
of — b/2 5  b / 2 :

2 °°
<Pc*(1,2,t)>  =  —  \ q 1(x ' ,x )dx '  (13)

n /o b/2

lo is the mean nearest defect distance, nlo the total 
length of the system, dx'/nlo is consequently the 
probability that a specific defect lies initially 
between x' and x ’ - \ -dx’. qi(x',  r) is the probability 
that the defect diffuses from this initial position to 
the reference region — b/2 ^ x  ^ b / 2 .

By the use of the solution of the one-dimensional 
diffusion equation we obtain

x’ + bl 2 1
g i ( * ' ,r ) =  J —- = =

*'-6/2 2  y n  D  x
X exp (— x"2I4D r) dx" , (14)

where D  is the diffusion coefficient of the defects. 
Combining Eq. (13) and (14) yields 

2 ~
—  I qi{x', r) dx' 
n lo b/2

tx' +  bj2\ J x '  -  6/2
Y y m ' - " 11

2 / nr
J erf

<PC*(1,2, t)> =

——— f 
n ^0 6/2

erf
2 )JDt

da;'

—— lim
U IQ t—►CXD 2 J D  t

dx

e-bi 2 /  x \

~ f  erf> 2 7 m r
(15)

where we have used the error function defined by 
2 x

erf (a;) =  - 7=- f e~r~ d t .
]/n J

The integral of this function is [1 1 ]
g - ff l2* 2

f erf (a x ) d x  =  x  erf (a x) + ------f  const.
J a y  n

Thus it follows from Eq. (8 b), (12) and (15)

exp
Gn{ T)

1
~ ^ ) )  ~ erf j/ rb

2r - P i  1) (16a)
1 - ^ ( 1 )

with t b — b2/ 2 D  and^?(l) =  exp (— b/l0 ).
In the limit b lo i.e. for low defect concentrations, we may write in linear approximation

Gn (r) =  erf( | / ^ -
2 r

i  — exp -{ —  
7i T b \ I 2r

(16b)

The condition b <4 lo is rather uncritical as can be shown by a numerical test. It is remarkable that this 
limiting expression doesn’t depend any more on the defect density. Merely the unnormalized correlation 
function, i.e. the absolute values of the relaxation sizes, are shifted by the defect density.

This behaviour corresponds to that found by Noack et al. [10] for a random pulse model by use of 
Campbell’s theorem. As illustrated in Fig. la , we have here a similar situation apart from the fact that 
all time dependences are diffusion controled. Campbell’s theorem states that the spectrum of a Poisson- 
like pulse sequence is dominated by the spectrum of the individual pulse shape rather than by the 
mean pulse rate. In the defect-diffusion model the ,,pulse-rate” is determined by the defect concentra­
tion, so that a complete analogy exists.

4.2. Nuclear Magnetic Relaxation

The Fourier transform of Eq. (16b) yields the normalized intensity function 

In (co) =  t b~1/2 co_3/2( 1 — e~^(OTb [cos J/co T6 +  sin j/(x) Tfc]) (17)
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with tö =  62/2D . For the longitudinal relaxation 
rate we make use of the fact that even for aniso­
tropic motions [3] the following relation is fre­
quently valid

< |jP(2)|2) _  |<JP(2))|2
^ 4 « | JP a ) |2 > - |< JF(l)>|2) (18)

=  4 c r ( D ( o i )

square displacement fe2. Figure 2 and 3 show plots 
of the behaviour of Equation (19).

4.3. Dielectric Relaxation

We combine Eq. (16b) with Equation (4). For 
this purpose we use the Laplace transform [12]

^ { G n {  r)}

so that for a two-spin 1/2 ensemble 

1

T~x

1 9 I n  o \ 2
t 7  =  ¥ ^ T 4 * " )  a ( 1 ) ( ^ [ I n { ( o )

4 I n (2 co)] (19)

1
i co

+  i

1 — e y,wrt’ (cos j/co r b — sin |/w Xb)

2 j/(o x  b

1 — e~^WXb (cos |/<w xb +  sin j/co r&)

-  1

2 |/ft) T&
(21)

°'(1)(pi) is the mean square deviation of FW .  The 
dependence on the defect concentration enters 
merely by this quantity. For oi&<^1 it holds 
tf(1)(ei) ~  Qi-
For o j  Xb  1 we find the limit 

l /^ i

leading finally to

e{co) — e{oo)
e(0) — e(co) 

1

}/t&/co 

while for a> 1

1/T i -  r0- i / 2 ft)-3/2

(20 a)

(20b)

yjo) r b 

x (l

1 +  i
(22)

{cos |/ to  xb +  sin j/to Xb})

Thus we have obtained analogous limits as Hunt 
and Powles [2] for the nearest neighbour approxi­
mation. The co~3/2-slope of Eq. (20 b) is related 
with the continuous diffusion assumed above. For 
stepwise defect diffusion one would expect a final 
ftj~2-slope [3]. A ^i-minimum occurs for 1.4.
Notice that Xb is the mean diffusion time for a mean

The limiting behaviour of this formula at low and 
high frequencies is plotted in Figures 2 and 3.

4.4. Total Correlation Loss

We turn now to the second type of ansatz as 
illustrated in Figure 1 b. The arrival of a defect shall 
cause a sudden change leaving a state uncorrelated 
to the initial one. On this basis Bordewijk [6] has

Fig. 2. Frequency dependence of n m r  and dielectric relaxation quantities for unlimited one-dimensional diffusion of 
defects with restoring capability.

\
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Fig. 3. NMR and dielectric relaxation quantities in dependence on r b for unlimited one-dimensional diffusion of defects 
with restoring capability.

derived an expression compatible with the empirical 
formula of Williams and Watts [13]

0 „( r )  =  ex p [— (r/r i)1'2] (23)

with ti — n  lo2 (16-D)-1. The intensity function is 
then

In(oo) = |/47"i{cos(a)
+  sin (a) [ J - S 2(a)]}

(24)

with a =  (4w t/)_1. C2 and S 2 are the Fresnel- 
integrals

C*(x)

S2{%)

|/2yr J ]/t
cos t

d t ,

k\ sin t
j/2 n  J |It

d t ,

which are tabulated for instance in Reference [14]. 
The limiting behaviour for

co n  >  1 is I n ~  r r 1/2 (o~3/2 ■

The dielectric relaxation behaviour is discussed in 
Reference [13].

The abrupt loss of the correlation at the arrival 
might be somewhat unrealistic. We want therefore 
to add a short discussion of defects causing a 
smoothly increasing distortion (Figure lc).

We consider a reference particle at x =  0. When 
this position is reached, the total correlation to the 
initial state is assumed to be lost. As we don’t know 
the details of this distance dependent distortion, we 
simply use the rate of the first arrival of the defect 
at a position x averaged over — b/2 f^x ^  -\-bl2.

An alternative interpretation of this picture 
would be the assumption that a reference particle 
at x =  0 can suddenly lose the correlation to the 
initial state at any position of the defect within
— b/2 f^x ^ b / 2 .  An example could be a vacancy 
which gives an atom the chance to jump in it over 
a certain range of distance.

The probability that a defect passes a distance 
| x' — x | between r and r dr for the first time is

[15] I x - z ' l
?!(*', * ,T )d T =  2{ nXD)1^ i

• exp (— (x — a:')2/4 D  r) dr

where x' is the position of the „absorbing wall” and 
x is the initial co-ordinate of the defect. The 
average over the positions of the „absorbing walls” 
yields

1 bl2

• exp (— (x — x')2/4D  t) dx' (25)

=  6 ( I t ) i /2 [ e x p ( ~  ( I * ! - 6/2 )2/4 -0 1 )

— exp (— ( |z | +  6/2)2/4 Z)t)] .
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The average over all initial positions x of the 
defect — a / 2  f^x  5S — 6 / 2  and 6 / 2  ^ x  5Sa/ 2  leads to

2 D  
qi {r )  =  ^ b

erf
( i i / D r )

— erf
a +  6

T j/F r

erf
2 f D

(26)

where a is the length of the total system. As a >  6  

we may write

2 D
9 i  ( T )  =  e r f

so that

qi{t) =

ab

D  i 
a 6

— \  2 |/Z> T /

H w )

(27)

dr

or by substitution
b 4D tlb 2

ql (t) =  —— f erf {u~1!2) du 
4 a 0J

The probability that none of n defects has touched 
the reference region is then

[1 - q i  (<)]"■

Recognizing that a =  nlo and that n is a large 
number, leads to

Gn {t) =  lim
n - >  00

1 6
1 — ----- 7-r- J erf (w-1/2) du

n 4 / 0 0

b 4 Dtib*

4 Iq

For t < b 2/4 D  we can use the approximation
4 D t/b 2

Gn (t) =  1 — —7 -  f erf (w-1/2) dw .
4/o 0

(28)

The intensity function can then directly be derived 
from Eq. (28) by the aid of the Laplace-transform

D exp -
y

6 2 s 
D

-  1
(29)

b l 0 s 2

with s =  — ia>. The intensity function is then 

I n (co) =  2 ' R e { ^ { G n (t)}} (30)

1 — exp I —
2 D  1
6 Iq co2

(  i  /  62 \  /  62 co
' V y  ~2D  )  COS ] / T d

For 6  j/2D]a> we derive from Eq. (30) the limit 
for co ri  >  1 of Eq. (24) as it must be.

5. Three-Dimensional, Unlimited Defect Diffusion

5.1. Correlation Function

In the three-dimensional case Eq. (13) has to be 
modified in a way that the integral covers the whole 
space except a small sphere of radius a / 2  around 
the reference point. The defects are now considered 
to be extended over a sphere of diameter a.

The average probability that the Zth defect 
influences the reference particle after a period r is 
then quite analogous to Eq. (13)

< JV (1 ,2 ,t)>  =  —  J q3(r’, r) d V  . (31)
W T 0 r ’ > a l 2

Fo is the mean free volume per defect, n Vo the 
sample volume, qs(r', r) is the probability that a 
defect, initially in a distance r' is finally near the 
reference point within a sphere of radius a/2 . 
According to Ref. [15] it holds

w (r' t ) =  ( 4 » b * ) w  r. i r ' " i ,Dzd3r"- 

f+a% (32)
The integration concerns all final positions of the 
defect affecting the reference position.

So far we have assumed that the perturbation 
can occur with spherical symmetry around the 
defect position. The reference point would thus be 
influenced by all defects located within a sphere of 
radius a/2 [Eq. (32)]. This leads however to a rather 
complicated form of the integral in Equation (32). 
The problem can be avoided by the use of a con­
siderably simplifying approximation, which fortu­
nately leads to no severe alteration of the final 
result.

The integration in Eq. (32) can be performed by 
integrating over all curved infinitesimally thin 
slices described by the perturbation volume around 
the reference position and, on the other hand, by 
the spherical shell of thickness dr" with a radius r" 
around the initial defect position (Figure 4). For a 
spherical shape of the perturbation region the 
volume element thus would be

d3r” =  n — ( /  — r" ) 2 dr" (33)

Instead of this we approximate for simplicity the 
perturbation volume by a virtually conical shape 
(Fig- 4), so that the same volume results. The
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final position

re fe rence volume element
point (curved s l ic e

with radius r") ^  initial
position

Fig. 4. Illustration of the approximative volume element 
used in Section 5.1. The reference point in the center of 
the indicated volumes (r') is influenced by all defects 
entering these volumes (r"). The volume elements both 
for the spherical and for the conical shape have to be 
considered as curved slices of thickness dr" and with a 
radius of curvature r".

volume element is now

7i r 
d3 r” =  — a * —- d r "  

6 r ’
(34)

— a2 can be considered as the mean perturbation

cross section of the defects. A numerical control of 
this approximation is given below.

Equation (32) then becomes

a2
93 (r', r) = 48ti1/2(D t)3 /V  r. l al2

r’ + al 2
7 J r" e~r"*l4I>T dr"

exp -
24 (tt D  t-)1/2 r'

(r' +  a/2)2

(r' — a/2)2 
4 D  x

- eXp' -  4 D t  

Together with Eq. (31) we derive 

4 71

(35)

( P cl ( 1, 2, t )> =  lim jt f r'2 g3(r' ,x)dr '
^  * 0 a/2-j-e

n
1 ( a2 ] / 7 i D x  
____ J _____ ' _________ M  _ « - a 2/4-Dr]
Vo 1 3 L J

- h vi y r m )
7i a

l
lim erf (36)

Inserting Eq. (36) in Eq. (12) and (8b) yields

for r > 0  and (rn (0) =  l. V =  7ta3/6 is the volume 
of a defect; Fo =  @3-1 is the volume per defect; 
2>(l) =  e x p {— VIVo};  ra =  a2/6D . As V >  Vo we 
may use the linear approximation

Gn (r) - — erf 3 Xa
T T

i  / — X

Ta

3 t a 
2x

(37b)

for r >  0 and Gn (0) =  1 .

The condition V >  Fo is again rather uncritical. 
The deviations numerically found between Eq. (37 a) 
and Eq. (37 b) are even for V =  2 Vo only about 20%. 
This function has a similar form as in the one­
dimensional case [Eq. (16)]. The discontinuity at 
r =  0 is due to the approximation Equation (34). 
The numerical integration leads to a correlation 
function with a smooth initial part while the final 
decay becomes more and more identical to the 
approximated function. Figure 5 shows that the 
effect of this discontinuity on the relaxation 
behaviour is a small shift of the curves which can 
easily be corrected. It is again remarkable that the 
normalized correlation function doesn’t depend on 
the defect concentration, which merely influences 
the absolute value of the relaxation rates but not 
the frequency or temperature dependence.

5.2. Nuclear Magnetic Relaxation

Together with the Fourier transform of Eq. (37 b) 
we obtain

1 ftp 
47z

y * h 2 aM [ I n (co) +  4 I n (2(o)]

with

I n {co) =  (3ra)-1/2ft>“3/2[l — exp (— ]/3a>Ta) 
X (cos |/3  co xa

+  sin|/3coTa { l +  yScoXa})] •

(38 a)

The discussion of the one-dimensional case (Sec­
tion 4.2) can be transferred to Eq. (38a) which 
shows the same qualitative behaviour except for 
the limit coxa 1, for which the frequency depen-
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Fig. 5. Frequency dependence of n m r  and dielectric relaxation quantities for unlimited three-dimensional diffusion of 
defects with restoring capability. The points have been calculated numerically by the use of the correct volume element 
Equation (33). The lines represent the approximative results obtained from Eq. (38a) and (39a), respectively, which 
have been corrected by the substitution of co by 0.6 w as indicated by the arrow [Eq. (38 b) and (39b), respectively]. The 
correction symbol has been omitted for simplicity. The deviations are less than the experimental errors usually found.

dence vanishes. All remarkable features are given 
in Fig. 5 and 6. The numerical integration using the 
exact volume element Eq. (33) leads to merely 
shifted curves. Thus a correction of Eq. (38a) 
is possible by the substition of co by 0.6co:

7£orr(co) =  7n (0.6co). (38b)

5.3. Dielectric Relaxation

The stepwise initial decay of the correlation 
function Eq. (37 b) makes again no physical sense 
because it is a consequence of the approximation 
Equation (34). Thus we use only the smoothly 
decaying part of the correlation function, which has

Fig. 6. NMR and dielectric relaxation quantities in dependence on r a for unlimited three-dimensional diffusion of defects 
with restoring capability. The correction formulae (38 b) and (39b), respectively, have been applied omitting the cor­
rection symbol.
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to be renormalized according to the requirements of 
Equation (4). It follows

1
[1 — exp(— j/3 co r0)

e(co) — e(oo) 

e(0) — e(oo) j/3 co ra

X {cos ysco  xa (1 +  ]/3co ra) — sin |/3co xa}

-f  i (1 — ex p (— j/3 co T0) {cos j/3 co Ta 

+  sin |/3 co To (1 +  j/3 co Ta)} )] . (39 a)

The numerical test proves again that this result 
represents the actual behaviour of the model with 
satisfying accuracy, especially if the curves are 
shifted according to the correction formula

«corr(ft>) =  e (0.6 co). (39 b)

6. Limited Defect Diffusion

6.1. The Problem

So far we have considered non-interacting defects 
which diffuse independently from each other. In 
cases where this assumption is not justified we have 
to deal with a ,,many-particle problem”. Especially 
in the one-dimensional case and, for high defect 
densities, in three dimensions we can no more 
neglect „collisions” between defects. An altered 
diffusion behaviour is the consequence.

It is clear that an exact analytical treatment can 
not be envisaged. There are however two ways to 
overcome the difficulties:

(i) The time development of the system can be 
simulated with the aid of a Monte-Carlo calculation. 
Previously we have chosen this way for the deriva­
tion of the correlation function in molten polymers, 
assuming a one-dimensional system [16]. An 
extension to three dimensions is principally possible, 
though it may be a problem of the available com­
puter time.

(ii) It can be tried to simplify the system in such 
a way that an analytical treatment becomes possible 
and that the essential features of the processes are 
still included. Thus we have previously treated the 
one-dimensional diffusion of a single defect between 
reflecting walls, which might represent the neigh­
bouring defects or barriers arising from the structure 
of the system [4, 5].

The second method has certainly the advantage 
of yielding analytical expressions, though it is 
restricted to the one-dimensional case. In three 
dimensions the effect of defect collisions is, however, 
less severe. There are no „reflexions” in the -sense 
mentioned above. We expect essentially a reduction 
of the effective diffusion constant while the time 
dependence of the diffusion process is qualitatively 
the same as in the case without interaction between 
the defects. Therefore we will only discuss diffusion 
in one dimension according to the treatment given 
in Reference [5].

reflecting barriers

1
Xd

Fig. 7. Schematic representation of the problem to be 
dealt with in the case of limited defect diffusion.

We consider a model situation as represented in 
Figure 7. The probability that the interaction state 
is changed after a period x is given by

1---------------------------- d-bl 2 
P { i , 0 \ j ,  t ) — ---- — J J

r+bl 2
J  J  Jd(d — b) 6/2 x(^r+bl2 r-ft/2 

Xi^r—b/2
P c (xi ,Xf,  x) dXf dXi dr (40)

with the probability that the defect diffuses from 
Xi to Xf in the time interval x

OO

P c( x i , Xf, x) dxf — 2  [ q {2 n d  — [Xi — xf ),x)
71= — OO

+  q ( 2 n d  — {xt +  X f ) ,  x) ]dxf  (41)

[q(x, x) is given by the integrand of Equation (14)]. 
The sum comprises all diffusion pathways produced 
by the „method of images” [17]. Equation (40) 
includes the averages over all final positions of the 
defect except those near the reference point, 
all initial positions in the range

r — 6/2 5S xt ^  r  +  ft/2 ,

and, finally, over all positions of the reference point. 
Exactly spoken the latter average should be 
performed afterwards with the whole relaxation 
rates according to the assumption of rapid spin dif­
fusion in the n m r  case. Thus we have in principle to
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deal with different ensembles for each value of r. 
Formally this average can however be performed 
at this stage.

The required relaxation sizes have been calculated 
in Reference [5]. The results can be expressed either 
in rather lengthy real expressions or in short 
complex formulae. Both representations require a 
computer evaluation in order to plot the analytical 
behaviour. In the following we’ll discuss some 
approximative expressions. This will be performed 
by defining two characteristic time constants, 
namely r d  =  d 2/ 2 D  and Tb =  b2l2D.  The exact 
formulae can be found in Reference [5].

6.2. Nuclear Magnetic Relaxation

a) co Td <  1:
(This limit includes cor& 1.) The use of Eq. (18) 
and (19) leads to the frequency independent 
formulae

c) co T& >  1:
(This limit includes co Td 1).

T  i  8 7  \ 4n )

1 -h j/2 1

rU> Td 
T b

(44)
y^d. — y*b  co3/2

The temperature dependence of T \  shows a 
minimum for c o t & = 1 . 2  ( T d l > T & )  as indicated in 
Figure 8.

6.3. Dielectric Relaxation 

a) co Td 1:
E (co) — e { o o

1
Ti

15
—  ^ T y 4^2

1 -  t==

V 0 
4:71 

j/r&rd

(1) y  ib  r d

e(0) — e(oo)

b) co rj, <  1 <  co ^ : 
e(co) — e(oo) 1

CO 

Tb Td

1 +  * - ( y ^ b  Td

(}/Trf — |/r 0)2
(45)

Td

e(0) — e(oo)

(i/rd — yTb)2 ,

b) co Tft <  1 <  co 

1
~ f l  "  8 ' " \ 4 ti

yYd  — 2 |/t6  ( 1 + 2  |/2)
( | 'T  d —  | / t& )2 CO1/2

(42)

(7<1)l rbTd

2 { \ T d  —  } /t& )2 

• [2 J/Td — 3 y%b — f/co (^Ttf Tö 
— 2 r b ) +  i yco {\/TdTb — 2r&)].

c) co Tb >  1:
£ (co) — e(oo)

(46)

(43)

1
e(0) — e(oo)  ̂  ̂ 2

y  Td

(47)

1

y T b  Td  —  Tb C01/2 ’

Fig. 8. NMR and dielectric relaxation quantities in dependence on t<> for limited one-dimensional defect diffusion where 
we have assumed ra =  102 r&.
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Fig. 9. Frequency dependence of n m r  and dielectric relaxation quantities for limited one-dimensional defect diffusion. 
Notice that the ratio r a : T& =  102 is too small to show fully the intermediate behaviour given in Equation (43) and (46).

Figure 9 shows a plot of the whole frequency 
dependence.

7. Discussion

In this paper we have reviewed defect diffusion 
models basing on different assumptions. The most 
elementary distinction concerns the type of the 
diffusion processes. We have here assumed that the 
defects diffuse continuously, though the thermal 
activation suggests a stepwise character. Denoting 
the mean step time by xs , we can consider the 
present calculation to be valid in any case for 
co xs <| 1. Previously the possibly stepwise diffusion 
could be taken into account in some special models 
[3, 4]. From these investigations we conclude that 
the only consequence of the stepwise character 
would arise in the limit a> xs >  1 for which the 
proportionality T i ~  co2 has been calculated.

Secondly we have distinguished certain degrees 
of restrictions of the defect diffusion, caused by the 
interaction between defects. In the three-dimen- 
sional case, our argument was, that no principally 
different behaviour — except an alteration of the 
effective diffusion constant — should be expected. 
In the one-dimensional case, however, the limitation 
of the diffusion paths severely influences the 
relaxation for (oxb<^ 1, while the limit a> t*, >  1 is 
unaffected. The decision, which degree of mutual 
hindrance of the defects has to be assumed, depends

on the type of the considered defect. Extended 
torsions in polymer chains, for instance, are expected 
to penetrate each other without essential hindrance. 
The same holds for diffusing vacancies in any kind 
of material. A stronger hindrance is expected for 
dislocations in solids and localized defects in 
polymer chains. The energetics of these defects 
suggest more or less a hard-core behaviour.

The type of the defects and of the material 
defines also the dimensionality of the diffusion 
process. The decision of the dimensionality is quite 
important for the relaxation behaviour in the limit 
a) ra 1 or (o Tb 1, respectively, while in the 
opposite limits the behaviour is identical.

An important question is the dependence on the 
defect concentration. It is an essential statement of 
this study that unlimited diffusion can lead to 
normalized correlation functions independent on 
the defect concentration as discussed in Section 4.1. 
A concentration dependence appears, on the other 
hand, for Bordewijk’s model and for the restricted 
diffusion case via xa-

Comparing the diverse defect diffusion models 
presented in literature, one should be aware of the 
following. In previous calculations the nearest 
neighbour approximation has been used [1—3]. Ta­
king into account only the nearest neighbours is 
however somewhat inconsistent with the assump­
tion of unrestricted diffusion as outlined in Section
6. I f  no mutual hindrance of the defects is assumed,

4 <
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the treatment should include in any case all defects 
in the system ]6].

Finally we want to discuss the assumption of an 
infinite lifetime of the defects or a lifetime long 
compared with the relevant diffusion times, a quite 
essential feature of the whole formalism. What 
would happen if annihilation and creation of defects 
would be allowed at any place within the sample 
with the same probability and in a time scale 
shorter than the relevant diffusion times r x ? 
Clearly, the resulting behaviour approaches that of 
a Poisson process, i.e. an exponential correlation 
function analogous to that derived in Sect. 3.1 of 
Reference [3]. For mean lifetimes To !> r x the 
formalism presented above is appropriate. In the 
intermediate range and for finite systems, there
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remains the possibility to apply the matrix method 
described in Reference [4].

Applications of the models given above are 
possible for all kinds of more or less disordered 
systems. Thus a first discussion of defect diffusion 
in amorphous polyethylene is given in Reference
[18]. The diffusion of vacancies in crystalline 
materials on the other hand can be treated by 
refering directly to the symmetry properties as 
demonstrated in Ref. [19, 20] and in subsequent 
papers.
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